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Abstract. We argue that one of the early goals of color vision is to distinguish one kind
of material from another. Accordingly, we show that when a pair of image regions is such
that one region has greater intensity at one wavelength than at another wavelength, and the
second region has the opposite property, then the two regions are likely to have arisen from
distinct materials in the scene. We call this material change circumstance the “opposite
slope sign condition.” With this criterion as a foundation. we construct a reoresentation of
spectral information that facilitates the recognition of material changes.

Our theory has implications tor both psychology and neurophysiology. In particutar, Hering's
notion of opponent colors and psychologically unique primaries, and Land’s results in
two-color projection can be interpreted as different aspects of the visual system's goal of
categorizing materials. Also, the theory provides two basic interpretations of the function of
double-opponent coloi cells described by neurophysiologists.
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RUBIN AND RICHARDS ' : COLOR AND MATERIAL CATEGORIES

1. Introduction

The human wisual system performs a remarkable feat. The pattern of light that reaches.
the eye from a scene is the result of a complex interaction among several factors: the quality
of the iluminant, the geometry of the scene, and the properties of the materials composing
the visible surfaces. Yet somehow these confounded factors are mostly separated in our
perception. We see particular spatial arrangements of objects. These objects appear
bounded by surtaces having properties—color and texture—roughly invariant over a range
of conditions of geometry and illumination. To compute invariant descriptions of the material
properties of surfaces is an important goal of any visual system. Such material descriptors

are useful for object recognition and visual search.

it's commonplace to assume color vision has something to do with capturing the
albedoes of surface 1aaterials.! But exactly what aspect of the albedo function would serve
a visual system best? Consider the grandiose goal of recovering a material's albedo as a
continuous function of wavelength. Not only is this goal impractical; it is counter to the
aim of finding invariant descriptors. With such an over-zealous representation, unimportant
variations in a surface would prevent its being recognized as a single region, a patch of
one kind of stuff. The perception of the world would be shattered with spectral acuity too
fine; one literally wouldn't be able to see the forest for the trees.

Here we seek a representation of material reflectance in which trivial surface variations
can be overlooked in order to appreciate important similarities.? At the same timé. the
representation must ailow some discrimination among different matérials. Below we develop
such a categorical color space, based on a theoretical solution to the problem of identitying
material changes. A trichromatic system, it will be shown, yields a two-dimensional color
space in which the axes will turn out to represent boundaries between different materials.
The four quadrants of the two-dimensional space represent material categories.

2. Spectral Information at Edges

When two image regions arise from different materials in the scene, the transition from
one material to another will usually bring about an edge in the image. Thus we restrict our
saarch for matenal changes to edges. How can we decide whether an edge is due to a

material changn?

An edge in the image will usually anse from a single event or state of affairs in
the three-dimensional scene (Marr, 1282). The most commaon edge types are shadows,

‘The albedo of a materal s a tunchics of winelength pix). vath range (0. 1), that indicates what
frachion of photans (cimitted ty some hght source) at each wavelength will be reflected.

“We are not suqgagesting any spectral intormation be thrown awdy  Woe are merely explonng a single
problem  Other probloms may eoere deidiled spec trab information.
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(A) Lowful Chonge (B) Moterlol Chonge
E f\/\ E /‘\/_
Wavelength

ng]: retl Graphs of |mage intensity versus wavelength. Each curve renrmcnts the image intensity
measurable from one unage region. A} Two graphs of same shape: a hkely Iawful change. B) Two
graphs ol diferent shape: a candrdate for material change.

highlights, surface orientation discontinuities, and pigment density changes.® Alternatively,
an edge may be due to a material change, a discontinuity between two different kinds of
stuff.! How can a material change edge be distinguished from other types of edges? Rubin
& Richards (1982) attempted to answer this question. Edges which arise from shadows,
orientation changes and highlights are lawful in the sense that there are equations that

dencribe how image intensities will change across these edges. By contrast, material
changes are completely unpredictable; they are arbitrury changes, and as such, can only
be inferred by ruling out, at a given edge, the possibility of any of the above lawful changes.

To infer material changes, we now face tiie awkward prospect of havin'g to reject,
one by one, each of the lawful changes. Perhaps there is some method of rejecting all of
those edges en masse. Fortunately, there 1s a simple ordinal rule common to all the edges
formed by lawful processes: if the intensity at one wavelength decreases across a lawful
edge (shadows, highlights, and so on) then the intensity must also decrease at all other
wavelengths taken across the same edyge (Rubin and Richards, 1982). When this condition
is vit.ated, we say there is a "spectral crosspoint”” across the edge. Spectral crosspoints
imply material changes: a spectral crosspoint is illustrated in Fig. 2a. The spectral crosspoint
15 not the only means of discovering material changes. however. We will show that a second
and independent condition holds for each of the lawtul processes—namely the preservation
of ordinalty of image intensity across wavelength. A violation of this condition implies a

material change.

‘Surtace onestabhon change and shadow can comcide ot an edye. but this exception is umimportant
to the arquments that lollow. Scee Rubin & Tichards, 19432, footnote 16.

‘We conuder imatenals 1o conssr of some spectrally e cmbedding materid (0.g. cellulose)
impreariated vath a single grment (e q.. chlorophyll). A matenal change 15 a change in pigment type,

or a channe in both pigment and embedding matenal.

i)
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3. The Opposite Slope Sign Inference
5.1 The Lawftul Frocesses

Figure ta shows hve mmage intensity graphs of the same shape. Intuttively, the two
graphs. of ainutar shape, anse from maasurements taken on either side of a “lawful'” edge
typa. Figure 1b shows two graphs of different shape. None of the I_awful edge types could
have produced such a distortion, and intuitively it seems that a material change edge is
the best explanshon. We now must make explicit what we mean by “same shape'. and
then show that this definition ot spectral shape remains invariant across edges creatcd by
shadows. chanqges in surface brientatuon. highlights or variations in pigment density--namely

“the lawful conditions we wish to reject as material changes.

De!mitinn- Two curves of intensity versus wavelength have the same shape if the
ordinal relations of image intensity across wavelength are preserved.
- s
Thus, if Iv(X) and I,()) are image intensities as functions of wavelength measured on boti
sides, A and V', of an edge. Iy()\) and Iy(») have identical Eordinality it, for all Ay and \j,
Ix(M) < Ix(X2) ifF Iv(M) < Iy(>:). Note that two image ;intensity functions of identical

R o |
Q‘ ¢ ~ ordinality will have local extrema at the same values of wavelength.

Given this ordinat definition of “same shabe". Appendix 1 shows that the ordinality
relationship is preserved across all edges arising from the lawful edge types, provided that
the following two conditions hold.

Gray world condition: The average of all the different albedoes in the scene will
be a spectrally fiat *‘gray”, so that the diffuse reflected light will have the same
spectral character as the direct light.

Spectral normalization: The spectral samples of image intensity nave been
normalized with respect to the color of the illuminant.

(The need for the second condition, namely spectral normalization, will be eliminated

subsequently.)

3.2 The Opposite Slope Sign Operator

We now can proceed to test for *same shape" using the ordinality relation. If ordinality
is violated across an edge. then we infer the edge does not arise from one of the "lawful”
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lndepend.énce of V“C_ro‘s_.‘s-point and
Opposite Slope Sign

(B)|
. . ~,
| >< /'

=

Image Intensity

(]

(D) ./'

! | L1
M XZ M Xz
Wavelength

Figure 2 Graphs of image intensily (ordinate) versus wavelength (abscissa). Two wavolength
samples, A, and .. are siown. An image region yields two samples of intensity, one for each
wavelength, ana 1s represented by the line segment connecting the hvo sample values. a) & ¢) Two
examples of the spectral crosspomnt (Rubin & Ricnards. 1982). a) & b) Two cxamples of the opposite
slope sign condition. This is the minimal confiquration that shows differcnt ordinalities. Notg that
the crosspoint and opposite slope sign condition are completely independent, since they can occur
together (a), or each can occur alone (b and ¢), or neither can occur (d).

processes and hence must represent a material change (provided also, of course, that our
grey world condition is not violated).®

What is the simplest way to seek violations of ordinality? A pair of spectral samples
suffices.| Let the image intensities on both sides of an edge be measured at wavelengths
M and N.. If image intensity at X, is greater than that at X, on one side of the edge, then
the ordinality condition requires the same relationship hold on the other side. So if the
two sides|of the edge do not have greater intensity in the same spectral sample, ordinality
is violated; the edge cannot be lawful. (Details are given in Appendix 1.) This condition

“it is possible when the grey world assumption is wrong, material changes will be inferred from
imrges. This is not entirely bad news; it human perception also goes awry when the grey world
assumption s violated, then our thcory will become more credible as an account of biological visual
systems.
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is called the opposite slope sign condition.® Examples are shown in Fig. 2a and 2b. The
“slope" of the opposite slope sign condition is the slope of the graph of intensity versus

wavelength; it is an evaluation of the sign of the derivative of the spectral image intensity

function, .

More formally, given two regions X and Y across an edge and intensity samples /
taken at two wavelengths X, and »;, we have the following test for a material change:

Opposite Slope Sign Condition:
(’Xh - IXX,)(,YX, - IY*I) <0

which may be .contrasted with' the previously derived crosspoint condition (Rubin and
Richards, 1982):

Spectral Crosspoint Condition:

(Ixxy, = Iva, )} (Ixy, — Ivy,) < 0.

ule tidt e speLitdi CrusspOINt and uie uppusite SI0pe Sign cunuwitions are competely
independent. Figure 2a shows the two occurring together. Each condition can arise alone,

. as shown in Figs. 2b and 2c. Finally neither condition is necessary, as shown in Fig. 2d.

The two conditions are related by a kind of symmetry. The spectral crosspoint must
make two comparisons across an edge (one for each wavelength), and combine them
logically (both comparisons must work out in the correct way). The opposite slope sign
condition must make two comparisons, one within each image region, and then combine
them logically across the edge.

To summatrize: the spectral crosspoint—our original means of finding material changes—
has been augmented by a second and independent material change condition: opposite
siope sign. The opposite slupe sign condition is the key theoretical result on which we will
base our spectral representation of materiai types. We choose opposite slope sign rather
than the crosspomnt. because the opposite slope sign condition tells us something about
each of the two regions that produce it. Namely, one region has positive spectral slope, the
other negative. By contrast, the spectral crosspoint cannot be decomposed into assertions
about the two regions that produce 1t. In a crosspoint, spatial and spectral information are

"The cpposite stope sy condition 1s described here as existing statically, across an edge. It is a
spatial companson of spectral intermation. A companson of spectral information i tune is equivalent.
Such a temporal oppustte slope s«;n condition would work as follows: An eye could swecp across
art cdge, and the specteal intormation before and atter the movement could be compared. Similarly,
there 15 a temporal equivalent of the crosspoint. Consequences of these isomorphic computations in
the tlemporal domamn will not be explured here.
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hopelessly inteitwined. We do not cast aside the crosspoint. though. It will play a vital role
in correcting for the spectral content of the illuminant.

4.0 Spectral Normalization

For the opposite slope sign test to find 'material edges successfully, it is necessary
for the measured spectral intensitizs to be normalized. That is, these samples must be
transformed to what they would have been under a spectrally flat (*white") iliuminant.
Clearly it no correction is applied, then the stronger spectral skew of an illuminant may
not only reduce the number of observed opposite slope sign pairs, but mor2 seriously, may
transform pairs having the same slope sign into pairs that are seen as having an opposite

slope sign.

By contrast, the spectral crosspoint condition is insensitive to the spectral content
of the illuminant, as can be seen by inspecting panels A and C of Fig. 2. (See Rubin
& Riéhards, 1982, for a more formal treatment.) We capitalize on this property of the
crosspoint to devise a theory of spectral normalization. Once the image has been spectrally
normalized, it is as if the illuminant were white. The opposite slope sign condition will now
be ahle to find correctly a maximum number cf material changes.

Consider now a scene composed of a large number of randomly selected materials. For
each image region (simple closed curves defined by edges), take two samples of intensity
I\, and /,, at wavelengths X, and X,. Each region will be associated with a spectral slope
sign, which is just the sign of the difference I, — /,,. 't the illuminant ware white (same
photon flux at all wavelengths), we would expect to have roughly equal numbers of regions
of positive spectral slope and regions of negative spectral slope. This expectation is based
on two assumptions. The first is that there is a random collection of materiais in the scene.
The second is that materials in the world are such that a random collection of them will be
divided equally between positive and negative spectral slope.

As suggested above. normalization requires a collection of image regions that arises
from a random set of materials. What about using all image regions? The set of all image
regions is not likely to represent a random collection of materials, because many materials
will recur in several image regions. For example, if a cast shadow cuts across a single
piece of material, that material will be twice represented, once for each side of the shadow
edge. A second example arises with nigment density changes. In a forest scene, all
leaves are composed of the same mateiral (chlorophyll embedded in a cellulose base). A
sensible normalization scheme would not take each leaf as a distinct patch of material;
minor variations in pigment density from leaf to leaf ought to be ignored.
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it seems clear, then, that not all image reyions should participate in normalization.
Perhaps-a subset of image regions can be found that is more likely to represent a random
collection of materials. The spectral crosspoint offers a means of finding such a random
subset of regions. Suppose that instead of taking each image region as a distinct material,
we took only pairs of regions that have a spectral crosspoint on the edge between them,
We wouid be guaranteed that each pair of regions would correspond to distinct materials.
The pairs of different material regions found with the crosspoint will be the subset of image
regions that will be used fer normalization.

Our normalization scheme works like this: Recalll t‘hat we expect the regions found by
the crosspoint to represent a random coilection of materials. S2 we expect roughly the
same number of regions having positive spectral slope as negative. For the subset of image
regions defined by the crosspoint, tally the number having positive spectral slope and the
number having negative slope. If the numbers are approximately equal, our expectation has
been met; we can infer that the illuminant is whité (spectrally flat).? Suppose to the contrary
that the number of regions of positive spectral slope exceeds the number of negative-slope
regions. Then we can infer that the illuminant is more intense at long wavelengths than
at short. (Positive spectral slope means greater intensity in the longer wavelength sample.)
Now multiplicatively scale une of the spectral samples. In the example here, we need to .
multiply all long wavelength samples by some number less than one. Exactly which number?
The one that will fulfill our expectation of equal numbers of positive and negative spectral
slope. That is, multiply all long wavelength samples by some number (less than one) such
that half of the regions under consideration will have greater intensity in the modified long

‘wavelength sample than the short wavelength sample, and half, the reverse. For a large

number of samples, the multiplicative constant of normalization can be calculated from

"~ the mean value of the spectral slopes of all regions participating in crosspoints. See the
~ algorithm for spectral normalization in Appendix 2.

This crossp;)int normalization scheme has some useful properties. Each image region
used has the same potency in normalization, regardless of the size of the region. That is,
each pair of image regions (found with the crosspoint) maps to a pair of data points, one
for each region. This is good for two reasons. First, the scheme is independent of image
region areas. This is desirable since we would not want visual systems to treat an image of
a large blue thing and a small red thing differently from an image of a small blue thing and

"Note there must be some crosspoints for normalization to proceed. If there are no crosspoints,
there are no regions to consider. So although it is technically true that there are equal numbers
of positive-slope regions and negative-siope regions (namely, zero), we do not want to infer the
illuminant is white for two reasons. First, we have no information about any image region, and thus
it scems imprudent to guess blindly that the light is white. Second. we have evidence that the scene
consists of a single matenal since it has no crosspoints. Normalization would bring about material
change assertions via the opposite slope sign condition, in contradiction to the evidence of uniformity
from the crossgoint.
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It is worth comparing our crosspoint normalization with Land's latest normalization
theory. Land's (1983) scheme involves comparing the image intensity of a target region
with that of a few hundred random locations in the image. In such a theory, the larger
an image region, the more random locations it will contain. Land's theory is therefore
area-based, while ours is independent of the particular sizes of image regions. Our theory
makes different predictions from Land's: we expect no effect on normalization from the sizes
of image regions, or from the lengths of image edye segments. |

5.0 Choosing a Representation

Assume now that the image has been normalized using the spectral crosspoint
condition, as deécribed in section 4. We next select a representation of spectral information
based on that rule. In particular, we seek a s‘mple, convenient spectral repreéenlation of
materials that is invariant under shadow, highlight, surface orientation change, and pigment

density change.

For any region in the image, intensity can be measured at a long wavelength and at

a second, shorter wavelength. Call these two measurements of image intensity L and S, .

respectively, for each image region. Suppose we'd like to represent the spectral character
of a region with a single number, namely some mapping of the pair (L, S). Furthermore, we
would like the mapping (/, §) to be invariant under the lawful changes. The recognition of
material differences would be easy in such a representation. A single material in its different
guises—fully lit, shadowed, having different densities ol pigmentation, with different surface
orientations—would map ideally to a single point. If there were suct a mapping, then
whenever two image regions mapped to distinct points, we would know they corresponded
to distinct -naterials.

The lawful edge tynes are unfortunately so diverse that there is no function giving us the

desired mapping. No single continuous functicn of (1, §) will Le invariant under multiplicative -

(shadow), exponential (pigment density), and additive (highlight) changes. Material change,
then, cannot be reduced to the problem of distinguishing two points in the range of some
function.

The problem isn't hopeless, however, for there is a continuous function invariant under
some of the lawful changes, namely the multiplicative ones {shadow and surface orientation
change). Consider again the two image intensity samples § and [.. The quotient L will have
the identical value on both sides of a surface orientation change or a shadow edge. The
simple quotient i, of course, not unique in remaining constant across an orientation edge.
Many functions of the two samples /, and S have the same property. We will choose among
three simple functions having this property:

CTEWPIN-TY.T WLLN Y FENS.Y.S_ 6 0. ¢ C.cAuNE. . ., . -

—

« 8y

EREEIIRE =% SIS v e -,

- -



.

RUBIN AND RICHARDS } COLOR AND MATER!AL CATEGORIES

Many functions of the two samp'!es 1. and S have the same property. We will chcose among

three simple functions having this property:

I, I -8 .
' (7)

s ixs L¥S

How can we select among these candidates? The function § takes image regions
into the unbounded interval (v, 00}, while the other two functions take image intensities into
closed intervals. (, %, maps intensities into [0, 1]; ;§ maps into [~1,1].) The function § will
be rejected, since any reasonable computational system will be ‘better oft using quantities
that fall within a closed interval, rather than those that could be arbitrarily large. To choose
pbetween the two remaining candidate functions we consider the ease of discovering material
changes in these two maps. In particular, how does the opposite slope sign condition appear
in each of the candidate mappings?

Given two image regions X and Y, let /' denote the function L5, so that I'(X) and
F(Y) are the values of the function F' of regions X and Y, respectively. Then for F, the
opposite slope sign condition is expressed by [sign(I'(X) - 1) # .sign(I"(Y)—-;)]. (The reason
for this expression is that the functioh I’ takes on the value § whenever L = S.)

Let G denote the function =%, a common measure of contrast. This is a simnle
function that facilitates the computation of material cnange. The sign of G is the sign cf

- the spectral slope of an image region. That is, [sign(G(X)) # sign(G(Y))] emerges as the

opposite slope (material change) cordition.

We prefer. the function ¢ to the F for our representation. Whereas to determine
material chang'e with (7 requires only a sign check, with F, the system must maintain the
constant ! and perform two subtractions. The particular choice of /' or G, though, seems
not to be critical for the goals we have ‘in_ mipd.

Figure 3 shows the interval -1, 1], the range of the function G. Two image regions
corresponding to lit and shadowed versions of the same material, or two different surface
orientations, will, by Eeéign of (.‘.'be mapped to the same point. This is shown in Fig. 3a.
Two image reg.ons of different pigrment density have the same slope sign; hence, in the G
map, the corresponding pair of points cannot straddle the zero. The same holds for a pair
of points corresponding to a highlight and a neighboring matte region. The latter two edge
types are shown in the G mapping in Fig. 3b. If two image regions are mapped to points
straddling the zero (Fig. 3c), they arise from different materials.

To summarize, we sought a function of spectral information invariant over the lawiul
changes. That goal being impossible, we chose {-;¥ for two reasons. First, it is invariant
across shadows and surface orientation changes. Second, finding material changes with
the opposite slope sigr condition is easy. The range of the function can be divided into
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How Edges Map into the
Spectral Representation

Shadowed Lt

region region
N/

1 1 ;] L-S
(A) 0 1 Lss

Pigment density change

(B) " -: 0/ P (;
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Materia! change
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Ficure 3 How various processes appear in the spectral representation implied by the mapping &4,
the range of which s [-1,1]. a) Two image rcgions differing only in surface orientation or shadow map
to a single point. b) Two regions differing as matte and highlighted, or as two different degrees of
pigmentation density, map to the same half of the range, i.e., they map to points having same-sign
coordinates. c) Only two ditferent materials can map to points straddling the zero, i.e., to points of
difterent-sign coordinates.

two parts, (.—-I,O) and (0, 1). Materials with albedoes of positive spectral slope sign will map
into the positive half of the range. and negative-sloping albedoes to the negative part of the

range.®

Finally, it's worth reiterating why we built our spectral representation around the
opposite slope sign condition, and not the spectral crosspoint. Spectral slope sign Is an
invariant property of a material's albedo function.® The opposite slope sign condition can
be decomposed into separate meaningful statements about properties of two image regions:
The slope sign of one region is positive, and that of the other, negative. We know something
about each region. The crosspoint, by contrast, hopelessly confounds spatial and spectral
information. Higher goals of co'or vision involve describing the properties of individual
image regions, and cannot be r2ached bty the crosspoint alone.

"Many continuous maps share the same invariance. We selected our map on the basis of algorithmic
considerations. The particular choice is independent of the theory of finding material change edges.

"Since a material is defined as & kind of stuff, a single material can have gitferent albedoes as pigment
density changes. What stays constant over these changes in density of pigment is spectral slope sign.
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Trichromatic Representations

S-M o 5-M M

3-M L-M_S-M
(A) '*M (B) S+M - L+M S+
[ 2/
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Figure 4 Stepsin the construction of the trichromatic material representation. a) Two axes comparing
I and M, and S and M samples, are joined nrthogonally. Each quadrant is a material category.
Paints in ditterent quadrants correspond to distinct materials. Points within one quadrant may belong
to the same material. they are considered equivalent in this representation. b) The Ime of unit slope
in the figure above represents the comparison between § and [, sainples. Aading the unit siope line
divides the color space into six regions or "hextants.” Points in different hextants arice from different
materials. Note the hextants do not have equal areas.

6.0 Trichromacy: Finding More Material Changes

Suppose we add a third spectral sample, cail it M, to our original § and [ samples.
Adding a third spectral sampie will allow the detection of new kinds of material changes.'?
Hewever, more impoitantly, the number of basic material categories will be increased from

two to six.

in the two-wavelength-sample material representation, an image region is encoded

“essentially by the rank order of the spectral samples, or equivaiently by the sign of the stope
of the line segment connecting the samples. Thus, given two wavelength meusurements,

there are two types of material—negative slope and positive slope. With three wavelength
samples, an image region is associated with thre= slope signs—a stope between each pair
of samples (SM, M1, S1). There are six possible rank orderings of the measurements
(3! = 8), and thus six possible basic material types. Any two regions that produce distinct
rank orderings of the wavelength samples will bring about rne or more opposite slope signs.
Any two such regions must therefore be distinct material;.

As a first step in constructing the trichromatic materi.al representation, we combine
slope information from two of the three pairs of samples. Arbitrarily, we bagin with SM

'"The additional number of material changes detected with each new speciral sample will drop
sharply after the third sample. The reason-is that the albedoes of natural objects (in the visible range)
are typically slow-changing functions of wavelength (rinov,- 1971; Snodderly, 1979). Cohen (1964)
showed that three caretully chosen tunctions of wavelength captured over 99% of the aibedo functions
ot Munsell chips.

11
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and LM, combining the information in a two-dimensional space as shown in Fig. 4a. Image
regions are mapped to points in the square !-1,1! X | 1,1,. and a pair of points separated
by an axis (or both axes) correspond to two regions of diflerent material, just as did a pair of
points straddling the zero in Fig. 3c. Any pair of points in a single quadrant may arise from a
single material. This is the sense in which quadrants represent material categories. Without
yet considering comparisons between & and [ samples. we alrecady have a categorical
representation in Fig. 4a, in which in each quadrant corresponds to a material category.

Let's now examine the third pairing o1 samples, $ and ... What condit'on holding
between a pair of points in the preliminary representation of Fig. 4a corresponds to the
opposite slope sign condition between 5 and /.? It is easily shown that if a pair of
points straddles the line of unit slope, the points arise from materials with opposite {$ and
1) slopes.'' Furthermarc, not just the sign, but the continucus value 'r;—f ofthe L to §
comparison is contained implicitly in the representation defined by ordered pairs (§-:3f, Foir)

that Fig. 4a illustrates.!?

The unit slope line in the SV -1.\M space theretore has special significance, and is
added to the representation as a third material change axis in Fig. 4h. A pair of points lying
across any of the three axes will correspond to distinct materials. Thus, each of the six
sectors of Fig. 4b carresponds to a material type. or equivalently, to a rank ordering of the
three samples. The particular rank ordering associated with each “hextant” is shown in Fig.
4b. Note the hextants of Fig. 4b do not have equal areas. The original pair of axes can ba
joined in a skew fashion to allocate more or less area to the different material categories.

To summarize. image intensities are measured at 5. M and /., normalized according
to the crosspoint normalization of section 4, and mapped to (1. A1, 3:4/) in a rectangular
coordinate system. initially creating four basic material types. A further subdivision into six
types can anse by using the hne of unit slope as a third axis, dividing the region |-1,1)?
into six regions, each corresponaing to a different material type Points in different hextaats
anse from different materials. whereas points common to one hextant may arise from lawful

edge events occurring on a single raterial.

Algonthm ahcionadus should turn to Appendix 2, where we sketch a procedure for
spectral categonzation based on the above theory.

"Theline of unitsiope s wvenby M 1 M Thisisequivalentto (S A(4 e M) - (S e ML - M),
or & L Ponts above wus unit siope ine correspond to /. > 8, points below 1o S > o..
' Given the values (1, 5. |, ). we can compule the value of {5 Let @ - 374 and R = L
Then !;4 - Y. %
IRy wa i

12
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7.0 Relation to Psychophysics and Neurophysiology

Our spectrdl representation of material types is but an abstract model of biclogical
color vision. In our theory, certain terms are left undefined. We haven't descrnibed what the
“spectral samples” of the theory are. and we haven't said anything abc .t how matenals are
encoded. How then can we assess its relevance? Two hnking assumptions will guide the
interpretation of our theory. First, in the discussion of the psychotogy of color visicn, we
will argue that of the tradutaonai color variables hue. saturation. and hghtness. it i1s hue that
encodes matenial type Second. in the discussion of neurophysiology. we take the small step
to identity the spectral samples of our theory with the relative stmulation of the three human
cone photopigments {or combinations thereof).'d Given this interpretation of cur theaory, it
turns out that doubie-opponent units found in color neurophysiology can be understood as

performing the spectral crosspoint and/or the opposite slope sign computaticn,

7.1 Psychologically Unique Primaries

Ewald Hering (1964) offered a psychological account of human color perception that
was based on the notion of eppenent processes. He observed that “redness and greenness,
or yeltowness and bll;oness are never simultaneausly evident in any colcr, but rather appear
to be mutu.lly 2xclusive.” This is a clear case of categorical perceplion. Reddish and
greemsh are mutually exclusive hue categones, and if hue 1s encoding material properties,
then the two cateqgornes will partition materials. Seé Fig. S5a. Similarly, bluish and yellowish
vl partition materials See Fig. Sh. These two sets of mutually excluswve hue pairs divide
th2 coler space nto four regions, as in Fig. Sc, just as did our trichromatic color space (Fig.

4:).

Our claim that Hering's color quadrants'k:orré'sbénd to our matérial éétegories is
pradictive. we expect that shadows. surface orientatton changes. and pigment density
chanqges yvould only rarely cause percewved hue to change from reddish to greenish (or vice
versa). or from yeilowish 1o blursh (or vice versa). As noted in Appendix |, highlights could

be troutiiecsome.

The fact that there are four hue categcries supports the idea that trichromatic human
vision uses two oppesite slope sign checks. as in Fig. 4a, but not the third, as shown in
3. 4b. (Goethe [18()8']. however, proposed a theory ot color perception based on six
hue categortes. which might correspond to the use of all three opposite slope sign checks.)

""Our heory of crossponts and opposite slope signs was based on spectral samples at a single
wavelength - Biotogqical measurcments of the spectrum are broadband. It turns out that broadband
samples cannot intraduce crosspoints that are taise targets. That s, a spectral croospomt found with
broadband sampies 1s st a rehatle indicator of matenal change (Rubin & Richards, 1982, Appendix
IV} The opposite slope sign condition may not be as robust; more work 1s needed to study the effects
of broadband sampling.

13 .
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~ Opponent Color Theory
" (A) (8) (C) Unawe

Blush | Reddish
L ] *

Reddish Redssh | Yel'ow sh

Unique
Yellow

Creenish
¢

Greenish

Yellowish

Unique
Green

e i an cominn S
Figure 5 tienrg's noton of r)oonnom cnlor pmres:,es a) Al colow mn enhor reddish or greenish,
bat never both by Al colors are ether bluish or yeilowish tut never both  ¢) The two pairs ot mutually
exclutive colors doede the ceor oircte into four quadrants, similar to the tnchromatc representation

trat we deveopan ki 6a.
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Ewvidence tromantants (Bornsten et al, 1976) sapports Hering's theory of four hue categories
as independent of tanguage and culture. Pugeons also have categorical color perception
(Wright & Cumming, 1971). suggesting the computatlonal scheme that we propose here is

tundamental to color vision across species.

- Herny's notion ¢f epponent color proéesses implies four spezial hues. They are
indicated in Fig. 5c. These hues. which Hermg called psychological primaries, are the
boundaries that separate color categories. anary red is that hue among the reddish hues
that separates the yellowish from the blu:sh, primary blue is that hue among thc bluish
that splits the reddish from the greenish; anlld so on. These primary colors are unstable
in the sense that any deviation from them in\?olves a change of color categories. Hering's
psychological primaries correspond to the axés of our trichromatic representation (Fig. 4a).

Just why these primaries have their particular locations in the spectrum is an interesting
evolutionary question not addressed here. One possibility is that a creature's material
boundaries are positioned in some way as to make the greatest number of_ discriminations
among materials encountared in its environment.!* Interesting work has been dorie along
these lines. Snodderly (1979) attempted to relate the color vision of New World monkeys to
the spectral characteristics of their jungle habitat. Levine & MacNichol (1982, and McFarland

! ’Matorml bound ries can be changed in two ways. The wavelength at which a photopigment captures
the greatest percentage ot photons can be altered, or new ““channels” can be created by combining
photopigments. One sort of cambrnation of two spectral samples S and 1. is a rotation; that is, new
coordinates {8 cos @ - Lsind, S sin 0 + Lcos @) can be created for some angle of rotation 0. The original
and rotated coordinate systems will not always agree about whather two image regions satisfy the
opposite slope sign conditivn. Thal is, the two spectral coordinate systems dilfering only by a rotation
will make ditfcrent material distinctions. An angle @ can therefore be selected to maximize the number
of material chanyes detected.
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§ Munz (19750 hinked the photopigment charactenstics of hshes to the spnkttr.ﬂ character

of ight i thenr environments.

In sum, our spectral representation of material categories 1s a two-dimensional spaca
n which each quadrant represents a matenal type, and the axes represent the boundanes
between categores. Image regions that map to ditferent quadrants necessanly anse from
distinct materials; image regsons that map to the same quadrant may anise from a single
maternial - Supposing that. hue encodes matenal information, Hering's ohservation about
human color vision makes sense: hues are divided into four fundamental categories by the

mutually exclusive pairs red-green and blue-yetlow.

7.2 Land's Experiments

7.2.1 Two-Color Projection

- Edwin Land (1959a,b) conducted some remarkable experimemé in two-color projection
of notural images. Some of the phenomena he reported can be understood in terms of our
“materialistic” theory of categorical color vision.

Land's paradigm was as follows. Two different black-and-white transparencies were
made of a colorful natural scene by means of long- and short-wavelength filters.'> The two
transparencies were-called the long and short récords, respectively. Corresponding regions
of the two records, in general, were of different grey values. The two records were projected
on a screen in register, the short record with shart wavelength light, the long record with
long wavelength light. Surprisingly, the resulting image was richly colcred and faithful to
the original still-life.

Land's (1959a,b) work was basically descriptive. He found a means of predicting the
hue name of a region in the two-color reconstruction. The intensity of long-wavelength
light in the region was expressed as a fraction of the maximum long-wavelength intensity
in the entire image. The same was done for short-wavelength intensity, yielding a pair of
numbers {each between 0 and 1). This pair of numbers (fraction of maximum S, fraction of
maximum 1), plotted on log-log axes, yielded a coordinate system that Land used to relate
image intensity to perceived hue. Land's coordinate system (hereafter called ““Landspace”)

is shown in Fig. 6a.

We will now try to relate our current work to Land's findings. Whereas Land began with
some surprising experimental observations of color appearance, we took image intensity

""The transparencics did not consist solely of black regions and white regions, but rather the full
range of grey values belween bltack and wiwte.
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equations as the starting point of our theoretical investigation of the problem of discriminating

matenials. We will show how these two approaches dovetail.

Our argument below consists of four major points. First, we look at how the spectral
crosspoint appears in Landspace. Second. we propose that an absence ofcrosspoin!s
should cause a total failure of Landspace. and note the failure conditions already observed
for Landspace correspond to such an absence Accordingly. we make some predictions
for two-color prciection that confhict with- predictions in the litzrature. Third, we note
the opposite slope sign condition is identical to the fundamental split between wa n and
cool color categories in Landspace. Finally, we suggest a straighttorward extension of
our crosspoint normalization theory that would account for a peculiar result in two~color

projection.

7.2.2 The Spectral Crosspoint in Landspace

In general, the light source for a scene will not be white. (A white source is one that
emits the same flux of photons at each wavelength.) Suppose we take two spectral samples
of image intensity S and L. Spectral normalization is any procedure that transforms S and
1. into new values S* and L*, where the latter measurements would have been obtained had

the illuminant been white.

Land's normalization is ($°, L*) = (52—, 1), where S;.. and L. are the greatest
intensities measured in the S and L samples throughout the image.

Our theory of normalization is based on the spectral crosspoint, as discussed in section
4, To relate our current work to Land’s experiments, we must ask how spectral crosspoints
appear in Landspace. We claim that a crosspoint corresponds to a pair of puints in
Landspace that form a line segment of negative slope {in Landspace). To avoid confusion,
we will refer to the slope of line segments in Landsrace as '‘Landslope,” as distinguished
from spectral slope in plots of intensity versus wavelength as discussed earlier in the paper.
(Landslope, then, is a function of a pair of regions, whereas spectral slope is a property of
a single region.) Our claim, again, is that a spectral crosspoint corresponds in Landspace
to a pair of points of negative Landslope. The proof follows.

Suppose there is a crosspoint between regions X and Y. Then, say, Sx > Sy and
L.y < Ly. Does the crosspoint imply some sort of relationship among the Landspace
coordinates for X and Y, (S5,/1.%) and (5,1} )? It's easy to see from the definition of
Landspace coordinates that S5 > 8y and Ly < ;. Now Landslope is given by {v: ‘1';5-
so the Landslope of crosspoint regions X and Y is negative. (Note the assignment of S* to
the abscissa is irrelevant to the result.)

18
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L. andspace and Some Achromatic Loci
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Figure 6 Landspace ana some of its achromatic loci, as discovered by Land (1959a). A) Land's
coordinate system (adapted from Fig. 1 of Land, 1953b) that relates perceived hue to the fraction of
maximum long- and short-wavelength light (expressed on log-log axes). This coordinate system we
call “Landspace.” ) Image regions corresnond to a line of unit Landslope. Such an image (as well
as the next two) results in @ monochromatic percept. (This is produced by placing identical records
in the long- and short-wavelength projectors.) C) A line of zero slope. (This is created by removing
the record from the tlong-wavelength projector.) D) A line of stope ~1. (One record is placed in the
short-wavelength projector, and its photographic negative is placed in the long-wavelength projector.)

7.2.3 Failures of Landspace

Landspace is a way of predicting the perceived hue of a region given the ratio of its
intensity to the maximum intensity, at long and short wavelengths. This predictive scheme

1s successful for two-color projection of natural images. Land noticed, however, that for
certain contrived images, his coordinate system failed totally. These images were seen
as achromatic (or monochromatic). What did these concocted failure conditions have in
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common? Land (1959a) suspected that “any arrangement which yielded points falling on
a straight line [in Landspace], or even on a simple smooth curve, would be colorless."
[{Judd (1960) formalized Land's results on failure conditions.] We will show that the failure
conditions Land has diccovered correspond to situations in which our theory is unable to

make any material distinctions. Furthermore, we will show our theory predicts stricter failure

conditions than does Land in his conjecture.'®

Figures 8b.c.d depict three concocted situations that Land found [and Judd (1960)
verified] to cause a breakdown of Landspace. In figures 6b and 6c, the failure loci are
straight lines of non-negative Landslope. Notice that for such loci, there can be no spectral
crosspoints, since crosspoints correspond to point-pairs of negative Landslope.

Our normalization scheme, re-cast in Landspace, calls for inspection of all point-pairs
of negative Landslope, sir.ce this subset of points is more likely to arise from a random set of
materials than the totality of points. So a visual system using our ncrmalization procedure,
finding no point-pairs of negative Landslope (no crosspoints), would fairly conclude that
there are no material changes and hence only a single material is present. A monochrecmatic
(or achromatic) percept is an apt result, then, for a system that encodes material type by
hue.

Consider next a collinear collection of points of negative Landslopé in Landspace.
Normalization can proceed according to our scheme, Since spectral crosspoints are avail-
able. Thus we disagree with Land's (1959a) conjecture that a/l collinear sets of points will
be failures. We predict the locus shown in Fig. 7a will yield a range of hues. Only collinear
sets of positive Landslope will fail.

There is one special exception to our prediction that collinear loci of negative Landslope
will produce chromatic percepts. A set of points of Landslope -1 (Fig. 6d) corresponds to
an isoluminance image. Such an image has no luminance edges, and has long begn known
to disrupt vision (Evans, 1948). We have argued elsewhere (Rubin & Richards, 1982) that
crosspoints are only meaningful across edges, and hence should only be sougrie across
luminance discontinuities. Thus the isoluminance condition (the locus of Landsll)pe -~1)
implies an absence of cresspoints and a failure of normalization, leading to an achromatic

percept.
We turn next to Land's conjecture that curved loci in Landspace will yield achromatic

percepts.'” We believe this is an overgeneralization. We predict, along with Land, that the

'"*Land's conjecture {that smooth one-dimensional loci in Landspace will be seen as achromatic)
is problematic. it seems difficult to legistate whether a collection of points in a plane constitutes a
curvilinear arrangement or detnes an area. A smooth curve can be drawn through any collection of
points in a plane.

'"A line in Landspace does not have absolute significance anyway, since linehood depends on the
. choice ol axes. For example, a line in Landspace with log-log axes will not be a line with lincar or

power axes.
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Predictions
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Figure 7 Predictions of our theory that conflict with Land's conjec!::re that all one-dinensional loci
in Landspace will yield achromatic (monochromatic) percepts. A) A linear locus of negative Landslope
(# - 1). B) A smooth locus of paints without point-pairs of negative Landsiope should be a failure
condm&n. C) A smooth locus of points that has point-pairs of negative Landsione shouki produce a
range of hues. )

non-linear locus of points in Landspace shown in Fig. 7b, since it contains no point -pairs of
negative Landsiope (no crosspoints), will be achromatic. In contrast, the one-dimensionai
locus of Fig. 7¢ has point-pairs of negative Landslope, and should yield a range of hues.

To sum up, we have suggested that failure conditions of two—color prdiection occur
when there are no spectral crosspoints. That is, Land failures should ¢ ~ur if there are no
(or too few) point-pairs of negative Landslope. Our predicted range of failure conditions is
therefore narrower than Land's. Furthermore, Land's account of failures is purely descriptive;
ours is explanatory (via the theory of material changes). :

7.2.4 Opposite Slopé Sign and Landspace

We have| argued that the opposite slope sign condition (between two regions) is strong
grounds for inferring the two regions are composed of different materials. Can this condition
be recast in Landspace? The answer is yes: twc regions in the opposite slope sign relation
map to two points straddling the line of unit Landslope in Landspace.!®

The argument is as follows. Image regions X and Y satisty the opposite slope sign

"L and's early work relied on two spectral samples. Thus there is only one npposite slope sign
condition to worry abcut, as shown in Fig. 5. Our trichromatic theory, sketched in Fig. 8, is not
applicable to Land's work.

18




RUBIN AND RICHARDS COLOR AND MATERIAL CATEGORIES

condition if normalized image intensities'” obey the follawing: Ly > S} and Ly < Sy,
where L5 denotes the normalized intensity in the longwave sample o’ region X, and so
on. But the last condition ndicates that (54 ./L%) lies above the line of unit Landsiope
in Landspace (given the abscissa marks 5° values), and (.s‘;-,vl,;.) lies below. If the Land
normalization 1s correét. then we have shown that two reginns in an opposite slope sign
condition map to a pair of points in Landspace straddlirg the line of unit Landslope. (For
many complex natural images. Land’'s normalization scheme and ours could yield simiiar
results. That is why we can accep! Land's scheme as approximately correct.)

Examine again Land's results shown in Fig. 6a. Land observed that the hues appearing
above the line of unit Landslope are all "warm,” and those falling below are “cool.” (Wilson
& Brocklebank [1860]. in a study of two-color projection pheriomena, noted that although
hue, saturation, and lightness wére not precisely preserved in the two-color reconstruction
of the original still-life, at least the warm/cool aspect of hue was invariant.) The distinction
between warm and cool colors is certainly the most fundamental fact of categorical hue
perception. To sum up, given that Land's normalization has been successtul, different
materials (as discovered by the opposite slope sign criterion) map in Léndspace to two
points straddlinc the line of unit Landslope (and vice versa). In turn, two points straddling
the unit slope line correspond to two qualitatively distinct hues, one warm and one cool.
This observation suppoits our claim that hue is encoding information about differences in

material.

7.2.5 Doubling the Record

Land discovered that if he modified the two-color paradigm by placing & second
long-wave record. say. in the long-wave projector, perception is not substantially changed.
How does this transformation alter Landspace coordinates? The longwave coordinates of
Landspace are squared (and hence reduced since Landspace coordinates are between zero
ard unity). The shortwave coordinates are unchanged.

Notice thai to the extent that this “doubling the record" maniputation leaves perceived
hue unchanged, Landspace has failed. Landspace was intended to allow predictions of
perceived hue for a given pair of filters. But a successful prediction for the normal two-color
set-up will be unsuccessful for the doubled record. For example, in the norinal set-up, the
line of greys is the line of unit slupe; when the record is doubled an< perception remains
the same. the line of greys shifts to some curved locus (or a line of Landslope two on
log-log axes;. The perception of hue therefore depends not only on the two lilters, but the
distribution o! values in Landspace as well.

"YRecall that in order for the opposite slope sign to rehably indicate materral changes, the illuminant
must be white, or equivalently, the image must be normalized.

[
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How does the doubling-the-record transformation affect our normalization scheme?
Crosspoints are preserved, since doubling the record preserves ordinal relations among the

& measurements and among the 1.

Recall that the premise of our normalization theory was that given a random collection
of materials under white light, the median spectral slqpe would be zero. Suppose we divided
the random collection into two subgroups, one of light matcrials (high average albedo aver
wavelength) and one of dark. it seems that ou: tundamental premise would also be true
of each of the subgrou‘ps. That is, it seems reasonable to guess that the median spectral

~ slope of a random assortment of dark materials would be zero, and similarly for the light

collection.?® We suggest that our normalization could proceed independently for several
subgroups of image intensities, all members of a subgroup sharing similar lightness values.
Such an extension of our normalization scheme would tolerate some *'bending” of the grey
locus, as occurs when a record is doubled.

v|t‘s worth asking whether any natural situations cry out for normalization that varies
with'intensity. such as we propose. That is, where might we expect the spectral character
of illumination to vary with intensity? Aquatic environments come to mind. At a given depth,
light coming'from bciow has lower intensity and lower peak wavelength tian does light
coming from above (Levine & MacNichol, 1982; McFarland & Munz, 1'975a). Two distinct
Landspaces could be set up, one for the lower visual hemifield, another for the upper.
In terrestrial habhitats, it might be desirable to normalize shadowed (low intensity) regions
separately from fully lit (high intensity) regions in the same image. This would be the case
if the diffuse light were bluer than the direct light due to scatter.?!

7.3 Neurophysiological Operators .

How might operators be constructed that would detect crosspoints and the opposite
slope sign condition? Consider ciosspoints first. Suppose we wouid like to detect
crosspoints of the sort shown in Fig. 8a. Two spectral samples, M and [,, are taken on
both sides X and Y of an edge. Figure 8b shows schematically such a detector. Intensity
values of the I. samples are compared across the edge. We define (L'f) as the difference
between the /. value of side Y from the I, value of side X, if that value is positive, and zero
otherwise. Similarly, the M samples are compared across the edge. Here the M value of
side X is subtracted from that of side Y (again with a zero minimum). The resuits of the

*°0f course, this assumption can be tested. It dark materials, say, tended to be reddish, our
assumplion would be incorrect and require modification.
“'Note that in this case, the grey world assumption of section 3.4 is inappropriate.
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Crosspoint Opposife slope

(A) (D) o X
- N
< g2 o
€ < E 2
= ¢ oY = \OY
1 i ‘ ] 1
M L M L

Wavelength Wavelength

L*% M_‘) M~ )

— Ed d d

B (M* % Wy
tJnd—J o -

1) Arithmetic operation

=
o
]
r

1) Arithmetic operation

over space over wavelength
2) Logical operation 2) Logical operation
over wavelength over space
(C) L (F) [+
M* -
e . M* L

Helpful subunits Helpful subunits
(not found) (Wiese! and Hubel, 1966)

Figure 8 Detecting crosspoints and the opposite slope sign condition. a) The spectral crosspoint
to b detected. b) A schematic crosspoint detector. Note a loqical spectral operation follows an
anthme:tic spatial operation. ¢) Usefu! intermediate uni's for crosspoint detection are sketched. Eplit
bar shaped configuration indicates a spatial companson.  Comparisuns are made within spectral
channois. Outputs of theso intermediates can thes: be combined logically. d} The opposite slope sign
conthhon to he dotected. e) A schematic detector for the opposite slope sign. Note a logical spatial
operation {ollows an anthmetic spectral operation. f) Useful intermediate units for opposiie slope sign
detection, Spectral comparisons are made in a single spatial region, Qutputs of these intermediales
carni shen be cornbined logically.
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o ~ two arithmetical operations (%) and (M7) are combined Jogicafly with an AND.22

Next consider the detection of opposite slope signs as shown in Fig. 8d. On each
side of the edge, a spectral comparison must be made. The arithmetic operation (1. M ™)
denotes the value of the' Al sample subtracted from that of the I, sample on one side of the
edge. This operation has a minimum value of zero. The spectral compavrison (tt M7)is
then ANDed with the similarly defined comparison (L~ M *) on the opposite of the edge
to create the opposite slope sign detector shown in Fig. 8e. ‘

it's worth noting that for the crosspoint detector, two spatial, arithmetic operations are
v logically combined across wavelength samples. For the cpposite slope sign detector, two
spectral, arithmetic operations are combined logically across spaze (across an adge)

Both detectors (Figs. 8b and 8e) superficially resemble double-opponent units described
in many species (Daw, 1972; Michael, 1978a; Livingstone & Hubel, 1984). That is, both
detectors have two spatial fields—one that receives excitatory connections from one spectral
sample, and inhibitory inputs from another spectral sample, and a second spatial field

' recenvmg the opposite spectral inputs. Neurophysiological tests have not yet been sufficiently
detailed to distinguish whether double opponent units are computing spectral crosspoints,
or opposite slope signs, o neither.

° : Useful intermediate units for crosspoint detectors are shown in Fig. 8c. The line through
the bar-shaped configuration indicates a comparison across space. Comparisons are
“within spectral channels outputs of these intermediates can be comtined logica'ly to build
crosspomt detectors. This sort of intermediate unit—spatial comparisons in isolated spectral
channels—has only been reported once (Michael, 1978b), apparenily ,zithout replication, -

Figure 8f depicts useful intermediate units for opposite slope sign detection. Spectral

_comparisons are made within a sing!2 spatia! region. Units of this type—spectrally opponent

but spatially und.ifferentiated—have been described by physiologists recording from monkey

lateral geniculate nucleus (Weisel & Hubel, 1966; Kriiger, 1977; Michael, 1978b). This

, evidence suggesté that the double--cpponent units described in primate V1 might be

' performing an opposite slope sign computation. Detailed color neurophysiology is needed
' to test this notion. '

i éﬁ:}::' **Strictly speaking, the results of the two arithmetical operations must be converted to 0 or 1
. before being logically combined. Alternatively, the results of the arithmetical operations—the modified

subtrac ions—could be multipt:ied together. A non-zero product imnlies a crosspoint.

- . 23
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8..0 Summary

Our theory of colur vision presents two types of operaters—the spectral crosspoint for
normalization and the opnosite slope sign—which sultice in most cases to normalize for the
iluminant and to caizgorize the albedoes in the scene. Our scheme should differentiate
oetween the common natural pigments (ch'orophylls, xanthephylls and flavanoids), for
e ample, but not betwean the density vari:tions of any one of these pigments. The theory
does not addre ss this latter problem—namely how we appreciate tie fine changes in the
grain of a piece of teakwood. A quantitative color visiun syztem, of greater complexity than
the qualitative computations described here, will be needed tor such fine discriminations.
Categorical color vision is simply ah inexpensive method for making rapid and reliabie

coarse judgments about materials.
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Appendix 1: Lawful Processes

This appendix shows that image edges that arise from 1) change in surface orientaiion,
2) pigment density variations, 3) shadows and 4) highlights all preserve the ordinal relations
of image intensities across that edge, and hence cannot cause the opposite slope sign

condition.

1.0 Surface Orientation Change

Let X and Y be regions on either side of an edge due solely to a surfaée oriantation
discontinuity. Then the image intensities (as functions of wavelength) Iy(\) and Iy (M),
measured in X and Y, respectively, are related multipticatively. That is, Ix()) - aly(X) for
some constant « (Rubin & Richards, 1982; Horn & Sjoberg, 1979). Two functions differing
only by a multiplicative constant have identical ordinality.

2.0 Pigment Density Variation

Suppose X and Y are two regions on a planar piece of a single material that difter
only in pigment density. Then if the atbedo (as a function of wavelength) of region X is p()\),
the albedo of Y can be approximated*® by p*()\), where b is a constant related to pigment

- density (Rubin & Richards, 1982; Wyszecki & Stiles, 1967).

Tha light measured from regions X and Y is the product of the albedoes of Xand Y
with the radiant intensity of the illuminant. Since X and Y are assumed coplanar (recall that
pigment density change is stipulated as the sole cause of the edge), and the illumination is
the same for both, then any difference between measured intensities from the two regions
will be due to a difference in albedo functions. But the albedo functions are reiated by
an ‘ekponenlial constant, and two functions so related have identical ordinality, Therefore,
image intensities across a pigment density change will have identical ordinality. [Examples
of this relation for natural pigments can be seen in Krinov (1971), Francis & Clydesdale
{1975) or Snodderly (1979).]

3.0. Shadow

~ Consider an edge separating a lit region from a shaded one. Both lit and shaded
regions reflect diftuse illumination toward the viewer. The lit region, in addition, reflects a

*This oxponential relation presumes that the erﬁbeddmg matenal is spectrally neutral. If the
embedding layer reflects dificrent wavetlengths unequally, then change in pigment density has a more
complex description. In particular, pigment gensity changes can mimic matenal changes.
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direct source. I 10 and 1., 00 are image intensities (as functions of wavelength ) from

It ond shaded regions. respectively, then:

/l'.ll(\) I‘.n,’/u- ‘x)l'(\) (',
I.a’('\) lv‘.h![vu-('\) * l“.lnr ,(X;"(x)

where 1 e (3 and Ly, \) are the diffuse and direct compenents of illununation, and

#AA) charactenzes the albedo of the matenal.

By mspection of equations (1), 1t s clear that ordinahty can be vioiated in the case
of shadow. That s, a false target 1s possible  The wisual world. fortunately, offers certain
regulnrnﬁes. There s usually some close relation between diffuse and direct llumination
(Gordal e a: . 1984). This s not surprising. since diffuse hght results from diverse, random
reflections of the direct hght from a vanety of materials in the scene. An assumption will
be made that thus ts usually the case: a visual system can presume that diffuse light hr 3
the same spectral character as the direct hght Thatis. L'y ru X)) - kEy.,()), for sor e
constant k. This we call the "grey world’ assumption (see Section 3 1), because t is
imphed by the statement that all the altbhedoes ot a scene will average to grey. Anecd: tal
data support the grey world assumption  Hailman (1979) measured spectral irradis 1ce
functions In a pine woods In a sunny area and in nearby shade. The functions are striki' gly

simifar in shape, and are shown in Fig. 9.

Invoking the grey world assumption, eqguations (1) become:

,n’llvl()) 'kl"'ﬂ""'(x).p(x) (2)
Lae(X) (1 s k) Eaiece(N)p(X)
Note that the It ond shaded regions now give rise to multiplicatively related image

intensity functions Ordinality will therelore be preserved.

4.0 Highlights

The analysis ot highiighits 1s shghtly more complex The following equations (Rubin &
Richards. 1982: equations 1.41) express the image intensities to be found in a highlight and

neighborning matte region:

Inm”"x} (I"lh/]u-r(x) * II"JHV."(X))”(X)

. e , . 3
Ih|ghl|ghr('\) r llnr'(x) * (! ')ll" hf/'ur()‘) ¢ "‘-ll'fff‘x),”(x) ( )

where 1.0, (3) and 1y unyn:(2) are the images intensities (as tunctions of wavelength) in
matte and highlighted regions. and » « (0.1} is a constant that indicates to what extent the
suiface 1s murrorlike (¢ - | describes a perlect mirrar). (See Richards, Rubin 8 Holfman,

1082. tor a more extended treatment.)
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Shadow and Wavelength

|
[T— 111 1 T T 7T |
i :?‘. a 0. Lit i
5 T oo ' |
i g E- \.\ o i
S :
214 .
S\ Shadow |
o ' *
o "-.-.‘.\.
l -l ':_ \.-

Wovelength

Figure 9 Measurements of the speural ‘irrachance tunctions of direct sunlu;ht and necrby shade in a
Flonda pine woods, adapted trom Haitman (1979), Fig. 74a. On the ordinate 1s the logarithm of photon
flux. The abscissa shows wavelength. ‘

The equations express the fact that b.th highlighted and matte regions reflect both direct
and diffuse light. In addition, the higt light, acting as a partial mirror, reflects the direct light.

Applying the grey world assumption, equations (3) become:

Inu!lr()) == (l + k)"‘dnrrt(x)l’(x)

lhlghllgh.(x) =8l dnrrt(x) + (’ - 6)(' + k) 'durrl\x)p(x) (4,

which reduces to

,matlr(x) (l + k I‘durct(x)P(x)

Ihnghhght()‘) == ’wﬂunrl()‘)lb + “ - 6)“ + k)y())] (5)

By inspecting equations (5), it can be seen that highlights can produce a spurious
vioiation in ordinality. Assume now that the image has been normalized with respect to the
color of the illuminant. Normalization is any scheme that allows recovery of the spectral
character of the illuminant. (Such a computation is presented in scction 4.) Normalization
is equivalent to a transtcrmation of the image intensities to what they would have been had
the illuminant been white; it allows us to set I2y,,.()) == 4, where 3 is some canstint.

Both equations (5) can now be rewritten substituting for ISi. (M), yi€lding
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Loaer (V) 300 ¢ K)p(N)

Do niigne(XN) Sl ()8 "")I'(x)} ©

With the two assumptions of grey world and spectral normalization, highlights will not
produce “olations in ordinality. This can be seen in equations (6). where the image intensity
function of the highlighted region is simply related to the image iniensi!y function of the
neighboring matte region.  The intensity in the matte region is multiplied by a constant
(1 »). and then a constant function (/(x)  #.4) 1s added. These two operations preserve

ordinality: hence no opposite slopes will arise given our assumptions.
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Appendix 2;
Algorithm for Spectral Normalization
and Material Categorization

Given a tull-cclor image of a s 'ocnne lit by an unknown illumin.‘mt and a way of linding
edqges and regions, regions can be assigned to one of a small number of material categones
Regions in different categones are made of different matermls An algorithm {or cateqorizing
maternials is sketched below. The first step is 1o correct for colored illumination; the second

1s to categorize.

In the Beginnirig

The original full- color image can be viewed throygh three spectral filters, yielding three

- distinct maps of image intensity, say I?, G, and B. See Fig. 10a. These three maps of image

intensity we call “spectral images.” The number of f:lters. or their spectral characteristics,

should not be important. All that matters is that the fiilters yield independent measurements.
| ,

Spectral Normalizfation

First, apply an edge operator to the image. The partlcular edge operator should not be

‘crucial. Assume the edge operator produces a closed set of edges.?' Next, edge segments

must be made exphcnt See Fig. 10b. This involves Jnderstandmg vertices. For example, a
T-vertex terminates the edge that is the leg, but not the edge that’s the crossbar. Identifying

- edge segments is important because we will iterate tlLro'ugh a list of them,

For each edge segment, two narrow stﬁps muét be defined, one on each side. Call
the strips X and Y. (Understanding vertices is important because the strips must be free of
edges.) See Fig. 10c. '

Average the intensity values of each of the spectral images 1, 7, and I in both the X
and Y strips. The output of this step is six values Rx, Iy, Gx, Gy, Bx, and By.

For each edge segment, check for two types of crosspoint, I2G, and BG.2 (The
conditions are (Itx -- iy )((x — Gy) < 0 and (Gx - Gy )(Bx - By) < 0, respectively.) Note
the possibility of a third crosspoint involving the & and 13 samples.

Suppooe an image has n crosspoint edge segments. For each crosspoiht, record

"¢ algorithm for edge detection does not produce closed edges, then regions must somchow be
identified using edge fragments

**The It and (; samples can yield crosspoints, and independently, sa can the B and (; samples. The
(; sample could just as easily be taken as the photopic luminosity function.
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(A)

/) K | T

Spectral images

Full-color image

| (B) Edges, vertices
are made explicit

(C) x Edge strips are

| ’-Y\__ defined; each strip

- 7771 yields a point in the
spectral space below

(D) :..°.. | Uneven distribution
oo® e B-G of points in a spectral
o[®* * B+G  space

Figure 10 a) The full-color image 1s run through three spectral filters 2. ¢/, and I3, b) Edge segments
nave been found and made explicit. This inage shows five cdyge segments. Vertices have been found,
and are here marked with large black dote. ¢) On either side of one of the cdqges, narrow strips X and
¥ are detined. No edge segmaents shiould be in the stnips. ntensity averages will be taken in the three
spechial unages in both of the srips. yielding sis measurements. This s done for each edge segment
in the image. d) Measurcments taken from strips about cach edge map to points in a speciral space
detined by axes as labuled. Normahzation consists of multiplying /¢ and 14 v.xlllCS by tactors such that
equal numbers ot points will be found in each quadrant,

e
>



-
e

RUBIN AND RICHARDS COLOR AND MATERIAL CATEGORIES

spectral information about the two abutting strips. In particular, store two cclor contrast

values per region.

R, -G, B -G,

kLGB yG, b ®)

where i is an index ranging cver the In edge strips defined around n crosspoints. This
particular form of ratio is useful because its value must lie in the closed interval [-1,1]. The
spectral information recorded can be considered as 2a points in a two~dimensional spectral

space (with axes of 5134 and !'-{!) shown in Fig. 10d. (See also Fig. 4a.)

Let i be the number of pcints in the upper half-plane of the spectral space (Fig. 10d),

and L be the number of points in the left half-plane. Under a white illuminant, we'd expect

a random assortment of materials to yield U = [ == n; that is, pomts should be roughly
equally distributed among the quadrants of the spectral space.

if the 2n points are not divided equally among the quadrants of the spectral space. we
must seek normalization constants a and 3 that satisfy the following cntenon

ol — G;] an; - ]
MUEDIAN| ——— = MEDIAN|>——+ =0 9
'.lﬂlh + Gi i=1,u.,2n pl)‘ G' i=1,...,2n ( )
For a large enough number of image regions, we can take
= 1-Cre 8= 1-Cua ‘ B ET))
1+ Cro 1+Caq
where Cre and Cpui are means of the sets of measurements (8):
1
Cre = 2n ¢ 2‘ R; + G. ‘BG 2n ¢ Z B, + Cv' (1 1»)

The values of a and g8 in (10) will provide a correct normalization (i.e., normahzatlon
criterion (9) will hold) given some snmple statistica! condmons 26

The correctness of the normalization constants o« and 4 can easily be checked by
verifying that criterion (9) holds. If not, the values of a and 4 can be adjusted incrementally
in an iterative procedure. The entire normalization algorithm is shown as a flowchart in Fig.

11.

Once correct values of the normalization constants are returned by the algorithm, the
three spectral images R, ¢ and 3 can be transformed into a set of normalized spectral

*There must be at least 12 independent crosspoint edges, and the mean and median of the set

of measurements { j;-;-ﬁ } must approach the same value as i — oo, and similarly for the set of

measurements { {{.;f,: }. (See Siegel, 1958.)
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NORMALIZATION ALGORITHM

Begin with Points
in Spectral Space

!

2n
R|-Gi
{-1/2n i% X
Setacz TR
{ +1/2n Z S
P R,*Gi
izl
Voo § B
. i3' B' ’G.
> ﬁ-1+1/2n & 86
Z Bl*Gi
it
Compute zond %
|
f - i ¥
Compare|] == | Stop: Stop: =~ | Compare
™1 2z ond n Return a Return 8 Zandn [
x<n Z>n
————{ Increment @ | —< Increment B |«
|
! -——z—)—"—u Decrement @ Decrement 8 AL
Compute Compute
aR-G B8-6
— aree | ) L] Beve >
and recompute and recompute
4 Z

figure 11 Normalization Flowchart. Begin with points scattered in spectral space, and end with
a par of multiplicative normalization coethcicnts, o to balance the /2 image with respect to €, and 8
10 balonce the 1t unage with respect to €. :
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" (8)

(+,+)

RI1|6 !B
R
Rl 6| | 8|

Fiqure 12 a) The three spectral images 1t, G, and I3 are normalized using the multiplicative constants
produced by the procedure shown in Fig. 11. The normalized spectral intensity maps are ', ¢°, and
13°. b) The regions of the image sketched in Fig. 10b labeled with material categories. Each region is
assigned one of four possible ordinal doublets.

‘“mages. All values in the It image are multiplied by «, yielding £*. (The asterisk suberscript
denotes normalized intensity; see section 7.2.2.) Similarly, I3* == g13. Spectral image G is
unchanged: ¢ = ¢*. See Fig. 12a.

Shectral Categorieé

Suppose that when closed edge segments were found that image regions were made
explicit. For each region i, measure the averaqe values of the normalized spectral images.
yielding the triplet (R#;,C;,B;). A triplet of numbers yields one obvious pair of ordinal

relations:

(R:,(;‘:,”:) [atd (sign/m,signuc).- - 12)

where signpq is "+ if G; > R], and " -" otherwise.

Each region can therefore be assigned to one of four material categories: ( +, +), (-, +),
(=, +), (+,—). This is shown in Fig. 12b. Two regions that are in different categories are
composed of distinct materials.

Note that a third ordinal relation is sometimes independent, the ’2° - B* comparison.
If this relation is included, six spectral categories obtain.

Finally, note that while the algorithm described here is categorical, continuous infor-
mation has not been lost; it is stili available for more refined purposes. For each region 1,

the continuous-valued coordinates
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Ri— Gy -G

R; + (:‘," B + G

(13)

should be useful.
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